Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation.
نویسندگان
چکیده
When ozonation is employed in advanced water treatment plants to produce drinking water, dissolved organic matter reacts with ozone (O3) and/or hydroxyl radicals (OH) affecting disinfection byproduct (DBP) formation with subsequently used chlorine-based disinfectants. This study presents the effects of varying exposures of O3 and •OH on DBP concentrations and their associated toxicity generated after subsequent chlorination. DBP formation potential tests and in vitro bioassays were conducted after batch ozonation experiments of coagulated surface water with and without addition of tertiary butanol (t-BuOH, 10 mM) and hydrogen peroxide (H2O2, 1 mg/mg O3), and at different pH (6-8) and transferred ozone doses (0-1 mg/mg TOC). Although ozonation led to a 24-37% decrease in formation of total trihalomethanes, haloacetic acids, haloacetonitriles, and trihaloacetamides, an increase in formation of total trihalonitromethanes, chloral hydrate, and haloketones was observed. This effect however was less pronounced for samples ozonated at conditions favoring molecular ozone (e.g., pH 6 and in the presence of t-BuOH) over •OH reactions (e.g., pH 8 and in the presence of H2O2). Compared to ozonation only, addition of H2O2 consistently enhanced formation of all DBP groups (20-61%) except trihalonitromethanes. This proves that •OH-transformed organic matter is more susceptible to halogen incorporation. Analogously, adsorbable organic halogen (AOX) concentrations increased under conditions that favor •OH reactions. The ratio of unknown to known AOX, however, was greater at conditions that promote direct O3 reactions. Although significant correlation was found between AOX and genotoxicity with the p53 bioassay, toxicity tests using 4 in vitro bioassays showed relatively low absolute differences between various ozonation conditions.
منابع مشابه
Ozonation of drinking water: part I. Oxidation kinetics and product formation.
The oxidation of organic and inorganic compounds during ozonation can occur via ozone or OH radicals or a combination thereof. The oxidation pathway is determined by the ratio of ozone and OH radical concentrations and the corresponding kinetics. A huge database with several hundred rate constants for ozone and a few thousand rate constants for OH radicals is available. Ozone is an electrophile...
متن کاملPii: S0043-1354(00)00457-7
This study investigates the oxidative transformation of diethylenetriaminepentaacetate (DTPA), a synthetic ligand, during drinking water ozonation. The rate coefficients for the reactions of CaDTPA and ZnDTPA with ozone were determined to be 6200 and 3500 150M 1 s , respectively. The reactivity of Fe(III)DTPA towards ozone was found to be much lower ð510 M 1 s Þ, but near neutral pH the reactiv...
متن کاملReactions of thiocarbamate, triazine and urea herbicides, RDX and benzenes on EPA Contaminant Candidate List with ozone and with hydroxyl radicals.
Second-order rate constants of the direct ozone reactions [formula: see text] and the indirect OH radical reactions [formula: see text] for nine chemicals on the US EPA's Drinking Water Contaminant Candidate List (CCL) were studied during the ozonation and ozone/hydrogen peroxide advanced oxidation process (O(3)/H(2)O(2) AOP) using batch reactors. Except for the thiocarbamate herbicides (molina...
متن کاملOzonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine.
Ozone is an excellent disinfectant and can even be used to inactivate microorganisms such as protozoa which are very resistant to conventional disinfectants. Proper rate constants for the inactivation of microorganisms are only available for six species (E. coli, Bacillus subtilis spores, Rotavirus, Giardia lamblia cysts, Giardia muris cysts, Cryptosporidium parvum oocysts). The apparent activa...
متن کاملEffect of ozonation of swimming pool water on formation of volatile disinfection by-products – A laboratory study
Ozonation experiments were performed using unchlorinated tap water used for filling municipal swimming pools, actual pool water and pool water polluted by addition of fresh tap water and artificial body fluid to evaluate ozone kinetics and water quality effects on formation of volatile disinfection byproducts during subsequent chlorination. The ozone reaction was observed to behave according to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 87 شماره
صفحات -
تاریخ انتشار 2015